16,420 research outputs found

    Effect of electron-phonon interaction on spectroscopies in graphene

    Full text link
    We calculate the effect of the electron-phonon interaction on the electronic density of states (DOS), the quasiparticle properties and on the optical conductivity of graphene. In metals with DOS constant on the scale of phonon energies, the electron-phonon renormalizations drop out of the dressed DOS, however, due to the Dirac nature of the electron dynamics in graphene, the band DOS is linear in energy and phonon structures remain, which can be emphasized by taking an energy derivative. There is a shift in the chemical potential and in the position in energy of the Dirac point. Also, the DOS can be changed from a linear dependence out of value zero at the Dirac point to quadratic out of a finite value. The optical scattering rate 1/τ1/\tau sets the energy scale for the rise of the optical conductivity from its universal DC value 4e2/πh4e^2/\pi h (expected in the simplest theory when chemical potential and temperature are both 1/2τ\ll 1/2\tau) to its universal AC background value (σ0=πe2/2h)(\sigma_0=\pi e^2/2h). As in ordinary metals the DC conductivity remains unrenormalized while its AC value is changed. The optical spectral weight under the intraband Drude is reduced by a mass renormalization factor as is the effective scattering rate. Optical weight is transferred to an Holstein phonon-assisted side band. Due to Pauli blocking the interband transitions are sharply suppressed, but also nearly constant, below twice the value of renormalized chemical potential and also exhibit a phonon-assisted contribution. The universal background conductivity is reduced below σ0\sigma_0 at large energies.Comment: 22 pages, 19 figures, submitted to PR

    Identification and verification of frequency-domain models for XV-15 tilt-rotor aircraft dynamics

    Get PDF
    Frequency-domain methods are used to extract the open-loop dynamics of the XV-15 tilt-rotor aircraft from flight test data for the cruise condition (V = 170 knots). The frequency responses are numerically fitted with transfer-function forms to identify equivalent model characteristics. The associated handling quality parameters meet or exceed Level 2, Category A, requirements for fixed-wing military aircraft. Step response matching is used to verify the time-domain fidelity of the transfer-function models for the cruise and hover flight conditions. The transient responses of the model and aircraft are in close agreement in all cases, except for the normal acceleration response to elevator deflection in cruise. This discrepancy is probably due to the unmodeled rotor rpm dynamics. The utility of the frequency-domain approach for dynamics identification and analysis is clearly demonstrated

    Central Charge and the Andrews-Bailey Construction

    Get PDF
    From the equivalence of the bosonic and fermionic representations of finitized characters in conformal field theory, one can extract mathematical objects known as Bailey pairs. Recently Berkovich, McCoy and Schilling have constructed a `generalized' character formula depending on two parameters \ra and 2˚\r2, using the Bailey pairs of the unitary model M(p1,p)M(p-1,p). By taking appropriate limits of these parameters, they were able to obtain the characters of model M(p,p+1)M(p,p+1), N=1N=1 model SM(p,p+2)SM(p,p+2), and the unitary N=2N=2 model with central charge c=3(12p)c=3(1-{\frac{2}{p}}). In this letter we computed the effective central charge associated with this `generalized' character formula using a saddle point method. The result is a simple expression in dilogarithms which interpolates between the central charges of these unitary models.Comment: Latex2e, requires cite.sty package, 13 pages. Additional footnote, citation and reference

    Electric field assisted annealing and formation of prominent deep-level defect in ion-implanted n-type 4H-SiC

    No full text
    High-purity and low-doped n -type epitaxial layers of 4H-SiC have been implanted with N and C ions by using energies in the MeV range and doses from 2×10⁸to1×10⁹cm⁻² . Postimplant annealing was performed at 1100°C prior to sample analysis by deep-level transient spectroscopy (DLTS). A drastic and irreversible instability of the prominent EH7 deep-level defect occurs during the first DLTS temperature scan because of the electric field applied during the measurements. Depending on the implanted species, EH7 can decrease (N implants) as well as increase (C implants) in strength and the effect is attributed to charge-state controlled annealing and formation processes of EH7. The origin of EH7 is discussed and the experimental data support a model invoking interstitial C atoms.The authors thank the Australian Research Council and Norwegian Research Council

    Singular behaviour of the electromagnetic field

    Full text link
    The singularities of the electromagnetic field are derived to include all the point-like multipoles representing an electric charge and current distribution. Firstly derived in the static case, the result is generalized to the dynamic one. We establish a simple procedure for passing from the first, to the second case.Comment: Latex, 21.pages, no figure

    Eigenvector Expansion and Petermann Factor for Ohmically Damped Oscillators

    Full text link
    Correlation functions C(t)C(t) \sim in ohmically damped systems such as coupled harmonic oscillators or optical resonators can be expressed as a single sum over modes jj (which are not power-orthogonal), with each term multiplied by the Petermann factor (PF) CjC_j, leading to "excess noise" when Cj>1|C_j| > 1. It is shown that Cj>1|C_j| > 1 is common rather than exceptional, that Cj|C_j| can be large even for weak damping, and that the PF appears in other processes as well: for example, a time-independent perturbation \sim\ep leads to a frequency shift \sim \ep C_j. The coalescence of JJ (>1>1) eigenvectors gives rise to a critical point, which exhibits "giant excess noise" (CjC_j \to \infty). At critical points, the divergent parts of JJ contributions to C(t)C(t) cancel, while time-independent perturbations lead to non-analytic shifts \sim \ep^{1/J}.Comment: REVTeX4, 14 pages, 4 figures. v2: final, 20 single-col. pages, 2 figures. Streamlined with emphasis on physics over formalism; rewrote Section V E so that it refers to time-dependent (instead of non-equilibrium) effect

    Quasi-Normal Mode Expansion for Linearized Waves in Gravitational Systems

    Full text link
    The quasinormal modes (QNM's) of gravitational systems modeled by the Klein-Gordon equation with effective potentials are studied in analogy to the QNM's of optical cavities. Conditions are given for the QNM's to form a complete set, i.e., for the Green's function to be expressible as a sum over QNM's, answering a conjecture by Price and Husain [Phys. Rev. Lett. {\bf 68}, 1973 (1992)]. In the cases where the QNM sum is divergent, procedures for regularization are given. The crucial condition for completeness is the existence of spatial discontinuities in the system, e.g., the discontinuity at the stellar surface in the model of Price and Husain.Comment: 12 pages, WUGRAV-94-

    Quantum authentication with unitary coding sets

    Get PDF
    A general class of authentication schemes for arbitrary quantum messages is proposed. The class is based on the use of sets of unitary quantum operations in both transmission and reception, and on appending a quantum tag to the quantum message used in transmission. The previous secret between partners required for any authentication is a classical key. We obtain the minimal requirements on the unitary operations that lead to a probability of failure of the scheme less than one. This failure may be caused by someone performing a unitary operation on the message in the channel between the communicating partners, or by a potential forger impersonating the transmitter.Comment: RevTeX4, 10 page
    corecore